13,073 research outputs found

    On the hierarchy of neutrino masses

    Get PDF
    We present a model of neutrino masses combining the seesaw mechanism and strong Dirac mass hierarchy and at the same time exhibiting a significantly reduced hierarchy at the level of active neutrino masses. The heavy Majorana masses are assumed to be degenerate. The suppression of the hierarchy is due to a symmetric and unitary operator R whose role is discussed. The model gives realistic mixing and mass spectrum. The mixing of atmospheric neutrinos is attributed to the charged lepton sector whereas the mixing of solar neutrinos is due to the neutrino sector. Small U_e3 is a consequence of the model. The masses of the active neutrinos are given by ÎŒ3≈Δm@2\mu_3\approx\sqrt{\Delta m_{@}^2} and ÎŒ1/ÎŒ2≈tan⁥2ξ⊙\mu_1/\mu_2\approx \tan^2\theta_\odot.Comment: 12 pages; Talk presented by M. Jezabek at 'Supersymmetry and Brane Worlds,' Fifth European Meeting Planck 02, Kazimierz, Poland, May 25-29, 2002, to appear in Acta Phys. Polon.

    Thomas-Fermi approximation to static vortex states in superfluid trapped atomic gases

    Full text link
    We revise the Thomas-Fermi approximation for describing vortex states in Bose condensates of magnetically trapped atoms. Our approach is based on considering the hbar -> 0 limit rather than the N -> infinity limit as Thomas-Fermi approximation in close analogy with the Fermi systems. Even for relatively small numbers of trapped particles we find good agreement between Gross-Pitaevskii and Thomas-Fermi calculations for the different contributions to the total energy of the atoms in the condensate. We also discuss the application of our approach to the description of vortex states in superfluid fermionic systems in the Ginzburg-Landau regime.Comment: 11 pages, 6 figures, revtex4, substantially revised versio

    Temperature and finite-size effects in collective modes of superfluid Fermi gases

    Full text link
    We study the effects of superfluidity on the monopole and quadrupole collective excitations of a dilute ultra-cold Fermi gas with an attractive interatomic interaction. The system is treated fully microscopically within the Bogoliubov-de Gennes and quasiparticle random-phase approximation methods. The dependence on the temperature and on the trap frequency is analyzed and systematic comparisons with the corresponding hydrodynamic predictions are presented in order to study the limits of validity of the semiclassical approach.Comment: 9 pages, 4 figure

    Pairing correlations of cold fermionic gases at overflow from a narrow to a wide harmonic trap

    Full text link
    Within the context of Hartree-Fock-Bogoliubov theory, we study the behavior of superfluid Fermi systems when they pass from a small to a large container. Such systems can be now realized thanks to recent progress in experimental techniques. It will allow to better understand pairing properties at overflow and in general in rapidly varying external potentials

    The Organisation for Economic Co-operation and Development’s International Early Learning and Child Well-being Study: The scores are in!

    Get PDF
    This is the fourth colloquium for Contemporary Issues in Early Childhood on the Organisation for Economic Co-operation and Development’s International Early Learning and Child Well-being Study, and marks the recent publication by the Organisation for Economic Co-operation and Development of reports on the first round of this study. In it, the authors discuss what the results tell us, what they do not and what might come next. They conclude by supporting the need for comparative studies of early childhood education, but argue that the International Early Learning and Child Well-being Study is not the way to go

    The Shears Mechanism in 142Gd in the Skyrme-Hartree-Fock Method with the Tilted-Axis Cranking

    Get PDF
    We report on the first Skyrme-Hartree-Fock calculations with the tilted-axis cranking in the context of magnetic rotation. The mean field symmetries, differences between phenomenological and self-consistent methods and the generation of shears-like structures in the mean field are discussed. Significant role of the time-odd spin-spin effective interaction is pointed out. We reproduce the shears mechanism, but quantitative agreement with experiment is rather poor. It may have to do with too large core polarization, lack of pairing correlations or properties of the Skyrme force.Comment: Presented at the XXVII Mazurian Lakes School of Physics, September 2-9 2001, Krzyze, Poland, Submitted to Acta Physica Polonic
    • 

    corecore